- drated Zeolites of Type A," J. Phys. Chem., 85, 2783 (1981b).
- Gellens, L. R., J. V. Smith, and J. J. Pluth, "Crystal Structure of Vacuum-Dehydrated Silver Hydrogen Zeolite A," *J. Amer. Chem. Soc.*, **105**, 51 (1983).
- Habgood, H. W., "Adsorptive and Gas Chromatographic Properties of Various Cationic Forms of Zeolite X," Can. J. Chem., 42, 2340 (1964).
- Herden, H., W. D. Einicke, R. Schollner, W. J. Mortier, L. R. Gellens, and J. B. Uytterhoeven, "Location of Li-ions in Synthetic Zeolites X and Y," *Zeolites*, **2**, 131 (1982).
- Huang, Y., "Adsorption in AgX and AgY Zeolites by Carbon Monoxide and Other Simple Molecules," *J. Catalysis*, **32**, 482 (1974).
- Jacobs, P. A., J. B. Uytterhoeven, and H. K. Beyer, "Some Unusual Properties of Activated and Reduced AgNaA Zeolites," J. Chem. Soc. Faraday Trans. 1, 75, 56 (1979).
- Kim, Y., and Seff, K., "The Octahedral Hexasilver Molecule. Seven Crystal Structures of Variously Vacuum-Dehydrated Fully Ag⁺-Exchanged Zeolite A," J. Amer. Chem. Soc., 100, 6989 (1978a).
- Kim, Y., and K. Seff, "The Hexasilver Molecule Stabilized by Coordination to Six Silver Ions. The Structure of $(Ag^+)_6(Ag_6)$. The Crystal Structure of an Ethylene Sorption Complex of Partially Decomposed Fully Ag^+ -Exchanged Zeolite A," *J. Amer. Chem. Soc.*, **100**, 175 (1978b).
- Kim, Y., and K. Seff, "Crystal Structure of Fully Dehydrated, Partially Ag⁺-Exchanged Zeolite 4A, Ag_{7.6}Na_{4.4}-A. Ag⁺ Ions Prefer 6-Ring Sites. One Ag⁺ Ion is Reduced," *J. Phys. Chem.*, **91**, 671 (1987).
- Knaebel, K. S., and A. Kandybin, "Pressure Swing Adsorption System to Purify Oxygen," U.S. Patent 5,226,933 (1993).
- Kuhl, G. H., "Crystallization of Low-Silica Faujasite $(SiO_2/Al_2O_3 \approx 2.0)$," Zeolites, 7, 451 (1987).

- Leavitt, F. W., "Air Separation Pressure Swing Adsorption Process," U.S. Patent No. 5,074,892 (1991).
- McKee, D. W., "Separation of an Oxygen-Nitrogen Mixture," U.S. Patent No. 3.140.933 (1964).
- Ozin, G. A., M. D. Baker, and J. Godber, "Direct Observation of the Reversible Redox Couple Ag₃²⁺ ⇔ Ag₃⁰ in Silver Zeolite A by Fourier Transform Far-Infrared Spectroscopy," *J. Phys. Chem.*, **88**, 4902 (1984).
- Razmuz, D. M., and C. K. Hall, "Prediction of Gas Adsorption in 5A Zeolites Using Monte Carlo Simulation," AIChE J., 37, 769 (1991).
- Rege, S. U., and R. T. Yang, "Limits for Air Separation by Adsorption with LiX Zeolite," *Ind. Eng. Chem. Res.*, **36**, 5358 (1997).
- Yang, R. T., Gas Separation by Adsorption Processes, Butterworth, Boston (1987) (Reprinted by Imperial College Press, London and World Scientific Publishing Co., River Edge, NJ (1997a).
- Yang, R. T., "Recent Advances and New Horizons in Gas Adsorption—with a Focus on New Sorbents," Preprints Topical Conf. Separ. Sci. Tech., W. S. W. Ho and R. G. Luo, eds., AIChE, New York, p. 14 (1997b).
- Yang, R. T., Y. D. Chen, J. D. Peck, and N. Chen, "Zeolites Containing Mixed Cations for Air Separation by Weak Chemisorption-Assisted Adsorption," *Ind. Eng. Chem. Res.*, 35, 3093 (1996).
- Yang, R. T., and N. D. Hutson, "Lithium-based Zeolites Containing Silver and Copper and Use Thereof for Selective Adsorption," U.S. patent pending, Serial Number 60/114371 (filed Dec. 30, 1998).

Manuscript received Sept. 28, 1998, and revision received Jan. 28, 1999.

Correction

In the article titled "Concentration Profile for Linear Driving Force Model for Diffusion in a Particle" (January 1999, p. 196), the two sentences preceding Eq. 9, "A(t) and B(t) can be solved from the two boundary conditions ..." should be replaced by the following:

For A(t) and B(t), B(t) is first solved such that Eq. 8 leads directly to Glueckauf's LDF expression for all values of n ($n \ge 2$). A general expression for A(t) is given by Eq. 9. The solution for A(t) must satisfy the requirement that the transient volume-average uptake, $\overline{q}_j(t)$, calculated from the concentration profile is always equal to that calculated directly from the LDF expression. As shown below, Eq. 9 satisfies this requirement only when n=2 and 5. Moreover, an additional requirement for A(t) is that the negative portion of the concentration profile near r=0 at short times is minimized.